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1. INTRODUCTION

This system represents Dragon’s first participation in the
HUB4 evaluations since the 1995 Marketplace dry run.  At that
time, we used a fairly complicated system which had three sets
of acoustic models: one for clean wide-bandwidth data, one for
low-bandwidth data, and one for speech with music in the
background.  Our system produced small pieces that were
labelled by channel type and then decoded with the appropriate
model set [1].  Our 1997 evaluation system is much simpler,
since we use one set of gender independent, speaker
normalized models to recognize all of the data.  In the two
years between the dry run and the current evaluation, much of
our development work focused on the Switchboard corpus [2],
including many techniques -- such as speaker normalization
and rapid adaptation -- which now make it possible to
consolidate the treatment across channels and speakers.  The
current evaluation system in many ways represents the transfer
of these new techniques into our Broadcast News recognizer
together with building the infrastructure necessary to handle the
HUB4 data.

In the sections that follow, we describe the HUB4 evaluation
system and then discuss several families of experiments
exploring the performance of key components of the system.

2. SYSTEM OVERVIEW

Dragon’s continuous speech recognizer is a time synchronous
Hidden Markov Model based sytem, which has been described
extensively elsewhere ([1], [3]).

A total of 36 parameters are computed every 10 milliseconds:
12 cepstral parameters, 12 cepstral differences, 12 cepstral
second differences. We use PLP-based cepstra [4], computed in
the style of Cambridge/HTK, as reported in [5].  This set of 36
parameters is linearly transformed using IMELDA techniques
[6] to a set of 24 parameters which are used for training and
recognition.  Speaker normalization ([3], [7]) is used to reduce
variability among speakers due to vocal tract length.  During
the signal processing stage, the frequency scale is “warped”
using a piecewise linear transformation.

The model for a sentence hypothesis is obtained by
concatenating models we call PICs (for “phonemes-in-

context”).  For this evaluation, we used triphone models trained
from the HUB4 acoustic training data plus data drawn from the
Wall Street Journal, Marketplace, and WSJCAM0 corpora.  A
51-element phoneme set was used that has syllabic consonants
and two stress levels for certain vowels.  PICs are modeled
using from 3 to 4 nodes, with each node having an output
distribution (PEL) and a duration distribution. Which PEL
model to employ for any given position of any PIC is
determined based on a decision tree whose nodes ask linguistic
questions about neighboring phonemes as well as questions
about the position of word boundaries.  The PEL models
themselves are general mixture models with basis components
given by multivariate gaussian distributions with diagonal
covariance.

In addition to speaker normalization, we also make use of rapid
adaptation, using linear regression techniques to construct
transformations of acoustic parameter space mapping speaker-
independent model means to speaker-specific ones.  This
approach was inspired by, and represents a simplification of,
speaker adaptation strategies implemented by Cambridge [8].
We also used speaker adaptation techniques (SAT) during
training ([2], [9]): Training speech is force-aligned to
transcripts and the usual adaptation transformations are
computed mapping speaker-independent model to speaker-
specific data, and then a sort of “inverse” transformation is
performed on the speech frames.  This permits the training of
new models with the transformed data which should behave
well under test-time adaptation.  We used 4 transformation
classes both at training and test, determined by grouping related
phonemes.  (For another approach to speaker-adaptive training,
see [10].)

The evaluation system used a three-way interpolated trigram
language model and 57K vocabulary, described in more detail
in section 3.1 below.

To deal with the huge unbroken audio stream, we developed a
system to transform the input into clusters of smaller more
digestible pieces.  Since the clusters roughly correspond to
speakers, we treat them as such when we choose frequency
warps for speaker normalization and when we perform rapid
adaptation.

Here are the basic steps in the system protocol:



• An amplitude-based silence detector is used to break the
input into chunks that are 20 to 30 seconds long.

 
• A phoneme recognizer is used to produce a more refined

chopping of these chunks.
 
• The segments are clustered for speaker normalization and

unsupervised adaptation.
 
• Channel normalization is performed on each segment.
 
• Speaker normalization is performed within each cluster by

doing a quick, errorful recognition with small acoustic
models (5000 PELs) and a small bigram language model
(300,000 bigrams), and then rescoring this transcript
against speech data processed at each warp scale in order
to pick the best scoring scale.

 
• Speaker normalized, SAT models with 12,000 PELs are

used along with an interpolated trigram language model to
obtain an initial transcription for each cluster.

 
• Unsupervised rapid adaptation is performed within each

cluster, using 4 transformations, followed by the final
recognition pass using the adapted acoustic models and
the same trigram language model.

Because these are new aspects of the system, we provide
somewhat more detail on the segmentation and clustering
stages:

Phoneme Recognizer based Segmentation

We used a phoneme recognizer to segment the data into
segments of reasonable size for recognition.  The phoneme
recognizer uses small gender independent acoustic models
(5000 PELs) trained form the 1996 HUB4 acoustic training
corpus and a tri-phone language model trained from Wall
Street Journal data.  We included pure music in the data used to
train the silence model in the hope that silence would absorb
segments containing pure music ([11]).  A dynamic
programming algorithm was then applied to chop the phone-
labelled data: no segment was allowed to be shorter than 2
seconds or longer than 30 seconds, a penalty was applied if a
break occurred in speech, and a boost was applied if a break
occurred at the boundary of a region of silence with 4 or more
consecutive frames.

Clustering

Here our goal is to construct clusters for which features such as
channel conditions or the speakers’ warp factors are
comparable for all segments belonging to a given cluster.  To
do the clustering, we use the following measure of the distance
from a segment s to a cluster c:

KL(s,c+s) + KL(c,c+s) + TimePen(c,s)

where KL(a,b), the Kullback-Leibler distance, is the
expectation under a of the logarithm of the ratio of the
probability of the a distribution to the probability of the b
distribution, and TimePen(a,b) is a linear function of the
smallest time difference between a frame in a and a frame in b,
truncated at a maximum value.  The first term is a measure of
how far a segment is to a cluster with the segment added.  The
second term is a measure of how far the cluster is to the same
cluster with the segment added in.  In some sense, this term
measures how “unhappy” the other segments in the cluster
would be if we add the segment in question, causing the whole
cluster to move.  The last term introduces a bias in favor of
clustering together segments that are close in time.

Given the above distance measure, the clustering algorithm
proceeds as follows.  For each segment, we find the existing
cluster with the minimum distance.  If this distance is greater
than a certain threshold (or if, as at the beginning, there are no
existing clusters), we create a new cluster and remove the
segment from the cluster it is in (if any).  Otherwise, if the
segment is not already in the closest cluster, we add it to that
cluster and remove it from the cluster it is in.  We iterate in this
way through the segments a specified number of times.
Optionally, the program does one final pass in which segments
that belong to clusters with fewer than a specified number of
frames are reassigned, thus eliminating clusters with too few
frames.

We developed our clustering algorithm using gender
independent, unwarped models.  For these models, we
produced clusters that worked as well as those created using the
known speaker side information and the algorithm seemed
relatively insensitive to threshold choices across a wide range.
Explorations with more evaluation-like warped models are
described in section 3.2 below.

3. EXPERIMENTS & ANALYSIS

3.1 Language Modelling

For the evaluation we used an interpolated language model.
Three backoff trigram language models were trained from 500
million words of text.

• The Broadcast News acoustic training transcripts plus the
1995 Marketplace development transcripts were used to
train a language model (A) with 300,000 bigrams and
640,000 trigrams.

 
• The Broadcast News language model training corpus was

used to train a language model (B) with 7.1 million
bigrams and 9.9 million trigrams.

 
• The 1995 Hub4 and Hub3 newswire texts were combined

with 190 million words of commercially available
newspaper data collected from the period January 1995
through June 1996, to train a language model (C) with 8.8
million bigrams and 14.9 million trigrams.  We processed



data from the Boston Globe, the Dallas Morning News,
the Detroit Free Press, the Miami Herald, New York
Newsday, the Philadelphia Inquirer, and the San
Francisco Chronicle.

All bigrams and trigrams were retained for set A, all bigrams
but only trigrams occurring at least twice for B, and bigrams
occurring at least twice and trigrams at least three times for C.
These language models were interpolated with weights 0.22 for
A, 0.50 for B, and 0.28 for C, obtained by minimizing
perplexity on the 1996 HUB4 dev and eval tests.

The three language models share a 57K vocabulary constructed
from the combined training sources. For the purpose of creating
the vocabulary, the sources were combined with weights
determined based on preliminary recognition runs on the 1996
devtest: 0.30 for A, 0.50 for B, and 0.20 for C.  The top 57K
words from this weighted collection were retained (62K
including alternate pronunciations).  This 57K set resulted in
an OOV rate of 0.7% on the 1997 evaluation test.

How much did we gain from interpolating language model
probabilities rather than simply merging all of the text sources,
and how much did we gain from the addition of newspaper
data?  To attempt to answer the first question, we merged the
counts from the Broadcast News language model training
corpus, the newswire text, and the newspaper data.  We then
multiplied the counts from the acoustic training transcripts by a
factor m, and merged them with the counts from the other
corpora.  From this text, we built a backoff trigram language
model (retaining bigrams that occurred two or more times and
trigrams that occurred three or more times), and computed the
perplexity on the 1996 evaluation test set.  The resulting
perplexities are given in Table 1 along with the perplexity or
the original interpolated language model.

m perplexity

3 168.0
10 166.7
30 168.4

200 189.8

interp 148.3
Table 1: Language model perplexity for various weighted
combinations of training data.

We re-ran the evaluation with the language model built from
the data merged with m = 10.  As you can see in Table 2, the
interpolated (Eval) language model outperforms this “merged”
model by a small amount. However, this study could hardly be
called exhaustive.  In particular we have not yet explored
weighting the counts from the Broadcast News corpus, largely
because of the expense involved in running these experiments
in terms both of time and of diskspace.  In this respect,
experimenting with interpolated forms is much simpler, easily
allowing us to sweep out interpolation weights without
requiring the full rebuild of the language models being studied.

We also built a language model from merged counts, but now
excluding the newspaper data used in source C.  Again we see a

small degradation when re-running the evaluation (the “-
Papers” column).

Eval Merged -Papers

F0 14.7 14.6 14.9
F1 24.4 25.3 25.8
F2 32.7 34.2 34.1
F3 35.0 37.0 37.6
F4 32.7 30.2 30.6
F5 20.1 21.1 22.3
FX 49.7 46.7 48.3

Total 23.4 24.0 24.4
Table 2: Performance of interpolated language model vs.
models built from merged counts.  (Figures give word error
rate.)

3.2 Front End

We next turn to the contribution of frequency warping and
PLP-based cepstra to our evaluation system. All of the models
described in this section were trained from the 1996 HUB4
acoustic training corpus (~35 hours), and use the merged
trigram language model described in the preceding section.
Also, all of the acoustic models are about the same size, ~5000
PELs, smaller than our full evaluation models.  The test data is
the 1997 evaluation set using the same fixed chopping and
clustering determined by the evaluation system.  As in the
evaluation, we performed rapid unsupervised adaptation with
four transformations.  All experiments use matched training
and test, e.g. acoustic models trained from warped data are used
when recognizing warped test data.

First we compare our traditional melscale filterbank cepstral
coefficients (MFCC) to the PLP cepstral coefficients using
gender independent models (with no frequency warping).  The
resulting word error rates are reported in Table 3.  Surprisingly,
the traditional front-end does better prior to adaptation, but the
PLP front-end does better after adaptation.  We hypothesized
that this might be because the clusters for adaptation were
constructed using the PLP-processed data.  However, when we
tried using the traditional front-end when producing clusters for
adaptation with traditional front-end based models in a follow-
up experiment, we saw very little change in the results.

PLP MFCC
before after before after

F0 18.7 17.4 18.6 17.7
F1 31.9 29.6 31.7 29.9
F2 48.1 41.4 47.2 42.1
F3 41.7 39.5 40.4 38.6
F4 37.2 33.3 36.3 34.2
F5 35.1 31.6 31.6 31.2
FX 55.8 54.4 55.9 54.0

Total 30.9 28.1 30.5 28.6
Table 3: Performance of MFCC vs. PLP cepstra
both before and after adaptation.



Next, we compared gender independent (GI-NW) and gender
dependent (GD-NW) non-warped systems (using the PLP
frontend) to a gender independent frequency warped system
(GI-W) -- see Table 4.  In the GD-NW system, gender detection
was performed on a per cluster basis prior to adaptation.  To
get a fairer comparison, the gender detection should be done
prior to clustering, and clustering should be done within
gender.  This probably explains why the GD-NW system is
only 0.3 points better than the GI-NW system after adaptation.
In an early development experiment on the 1996 dev set that
used the true turn marks to determine the segment boundaries
and used the speaker identities to determine the clusters, we
saw a 1 point improvement when moving from a GI-NW
system to a GD-NW system, and an additional 1 point
improvement when moving from the GD-NW system to a GD-
W system.  This result was true both before and after speaker
adaptation.  The GI-W system would probably benefit from
using the warp scales in the clustering process, which may
explain why we don’t get as big an improvement over the GI-
NW as we might expect.

GI-NW GD-NW GI-W
before after before after before after

F0 18.7 17.4 18.2 17.4 17.6 16.9
F1 31.9 29.6 31.1 30.0 29.7 28.2
F2 48.1 41.4 46.2 40.1 43.8 37.8
F3 41.7 39.5 41.1 39.2 38.9 37.9
F4 37.2 33.3 35.6 33.0 34.2 33.0
F5 35.1 31.6 35.6 32.2 35.3 32.2
FX 55.8 54.4 53.2 49.1 54.6 50.3

Total 30.9 28.1 30.0 27.8 28.9 26.9
Table 4: Comparison of gender-independent non-warped,
gender-dependent non-warped, and gender-independent warped
acoustic models, both before and after adaptation.

3.3 Automatic Segmentation and Clustering

We next examine how well our automatic
segmentation/clustering system performed.  In the following
experiments we ran a modified version of our evaluation
system on the 1996 HUB4 evaluation data.  The differences are
that the acoustic models are slightly smaller non-SAT models
trained only from the 1997 HUB4 acoustic training corpus,
using frequency warping, while the language model is a small
bigram language model trained only from the transcripts of the
1997 HUB4 acoustic training corpus.  To explore the efficacy
of our algorithms, we tried replacing the automatically
generated segments by the known turn marks, and the

automatically generated clusters by clusters determined by the
known speaker identities.  In Table 5, the ‘known/known’
sytem uses the known turn marks and speaker identities, the
‘known/auto’ system uses the turn marks but automatically
clusters them, while the ‘auto/auto’ sytem uses automatic
segmentation and clustering.

chop:
clust:

known
known

known
auto

auto
auto

before after before after before after

F0 32.6 30.7 32.6 30.9 32.6 31.2
F1 35.1 34.4 35.6 35.0 37.1 36.2
F2 42.7 37.9 45.3 44.7 48.2 43.2
F3 35.9 32.7 37.1 33.9 39.6 39.0
F4 42.6 39.9 43.3 40.1 45.3 43.0
F5 46.2 45.2 49.5 49.2 44.5 43.8
FX 59.6 56.6 59.5 57.1 61.1 59.5

Tot 38.7 36.7 39.3 37.7 40.5 38.9
Table 5: Performance of automatic segmentation and
clustering compared to using known turn-marks and speaker
identities.

Let’s compare the first two systems, which will give us an
estimate of how well the clustering worked with warping and
adaptation.  We lose 0.6% by automatically clustering prior to
rapid adaptation, which grows to a 1% loss after rapid
adaptation.  Since we warp within clusters, the first loss may be
attributed to warping errors due to the clustering.  The
additional 0.4% loss represents the additional loss from using
the clusters instead of the true speaker identities when adapting.

Now let’s compare the last two columns, in order to estimate
how much we lose from automatic segmentation.  Notice that
before and after adaptation, we lose 1.2% which is attributable
to segmentation errors.

Overall we lost 2.2%: 1% due to warping/clustering errors and
1.2% was due to segmentation errors.  By taking into account
the warp scales during the clustering we can probably reduce
warping/clustering errors.

3.4 Acoustic Modelling

In the following experiments all of the acoustic models were
trained from warped training data, the test set was the 1996 dev
test (where the speaker side information and turn marks are
used for warping and adaptation), and the language model was
a small bigram language model trained from the 1997 HUB4
acoustic training corpus transcripts.



Our best system trained from the first half of the HUB4
acoustic training corpus, i.e. the 1996 HUB4 acoustic training
corpus, had a word error rate of 40.8%.  (We did our initial
development using this data in preparation for the STREC
evaluation, where we were required to run a recognizer, trained
from the first half of the training corpus, on the second half of
the training corpus.)  When we added the rest of the HUB4
training data, bringing the total amount of training data up to
about 70 hours, we saw a 1% absolute reduction in the error
rate.  When we added word boundary information to our
decision tree triphone clustering, we saw a further 1%
improvement.  Two passes of Baum-Welch adaptation gave an
additional small improvement of 0.2%, which we believe is
significant since the improvement occurred in each category
(F0-FX).  These models were used to seed the Speaker
Adaptive Training (SAT) process.  Results are summarized in
Table 6.

WER

Trained on initial 35 hours 40.8
Trained on entire 70 hour set 39.7
      + use word boundary 38.8
      + 2 passes of BW adapt’n 38.6

Table 6: Word error rate with increased training data and
addition of word-boundary information and Baum-Welch
adaptation.

We had disappointing results with SAT, which we are still
puzzled by. We saw no improvement when just training with
HUB4 data.  Only after adding data from other corpora did we
see any gains, and even then the gains were small.  In addition
to adding the 1995 Marketplace development data we tried
adding material from the Wall Street Journal, Macrophone, and
WSJCAM0 corpora.  The hope was that by adding WSJ data
we would improve the “read studio” category (F0), that by
adding Macrophone data we would improve the “low
bandwidth” category (F2), and that by adding WSJCAM0 data
we would improve the “non-native speaker” (F5) category.  In
the case of the WSJ and Macrophone corpora, we selected
gender balanced subsets for training, consisting of 20 and 10
hours resp., while we used all of the WSJCAM0 data.  Since
the Macrophone data was sampled at 8 kHz, we upsampled it to
16 kHz and then applied a low-pass filter, before proceeding
with our usual front end.

Table 7 summarizes the experiments that we ran, where size
refers to the total number of gaussian components in the
models, and the “adp WER” column reports the results of
unsupervised rapid adaptation using 4 transformations.

The addition of the WSJ data had the biggest impact, since we
had already determined in an earlier non-SAT experiment that
there was only a tiny improvement from adding Marketplace
data.  The initially encouraging improvement from adding the
WSJCAM0 data prior to rapid adaptation was nearly erased
after rapid adaptation. It will come as no surprise that most of
the improvement from adding the WSJCAM0 data was realized
in the “non-native speaker” category, F5.  Unfortunately,

adding the Macrophone data made things worse overall, and
did not give any improvement in the “low bandwidth” category.

We chose to use the bse_3 models for the evaluation system,
after subjecting them to an additional two passes of Baum-
Welch adaptation.  We also tried increasing the allowed
number of components per PEL from 32 up to 48, but that did
not yield any improvement.

size WER adp
WER

bse_3 models 174 37.6 36.0
plus 2 passes of BW 174 37.6 35.6
up to 48 comps/PEL 203 37.6 36.1

Table 8: Further model tuning -- adding 2 passes of Baum-
Welch adaptation during training and increasing the number of
components per mixture.

3.5 Retuning

During the follow-up analysis of our Mandarin Broadcast News
system [12], we discovered that the system was significantly
mistuned and that results could be improved by widening
recognition thresholds.  We tried using these new Mandarin-
tuned recognizer settings on the English system and were
delighted to see a 1.9% reduction in word error rate over our
official evaluation run, as reported in Table 9.

4. FUTURE WORK

Much of our time in preparing for this evaluation was spent
simply organizing and learning to work with the vast body of
training and test materials that make up the HUB4 corpus.
Now that we have a Broadcast News transcription system in
place at last, we look forward to embarking on a number of
experiments.  Among other projects, we will be studying more

Available training data:
A = HUB4 70 hrs
B = WSJ si250 20 hrs
C = Marketplace   6 hrs
D = Macrophone 10 hrs
E = WSJCAM0 16 hrs

name trained on size WER adp
WER

b8_a A (no SAT) 134 38.6 36.9
bse_0 A 134 38.7 36.7
bse_1 A  B  C 162 38.5 36.1
bse_2 A  B  C  D 165 38.4 36.3
bse_3 A  B  C  E 174 37.6 36.0
bse_4 A  B  C  D  E 177 38.0 35.9

Table 7:  Performance of SAT models using different training
data sources.



carefully the interaction of the clustering with speaker
normalization.  We will also explore adding easily obtained and
reliable side information, such as gender, to improve the
clustering process.
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official tuned

F0 14.9 12.9
F1 23.4 22.2
F2 31.9 30.2
F3 35.8 33.4
F4 30.0 27.7
F5 21.3 18.4
FX 45.7 43.0

Tot 23.3 21.4
Table 9: Re-running the evaluation
system with new recognizer settings.


